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COMPARISONS O F  THEORETICAL AND EXPERIMICNTAL 

PRESSURE DISTRIBUTIONS OVER A WING-BODY MODEL AT 

HIGH SUPERSONIC SPEEDS 

By Lloyd S. Jernell  
Langley Research Center 

SUMMARY 

An investigation has been conducted to determine the effectiveness of various theo- 
retical methods in predicting the pressure distribution over a wing-body configuration at 
high supersonic speeds. Theoretical pressure coefficients a r e  compared with experi- 
mental values obtained on a delta planform wing-body model in the Langley Unitary Plan 
wind tunnel at Mach numbers from 2.30 to 4.63 and angles of attack to approximately 1l0. 

For  bodies of fineness ratio similar to the fuselage forebody of the present investi- 
gation, the data indicate that ai Mach numbers near and above 4.63 the conical-shock- 
expansion method may be considered accurate enough for many engineering purposes. 

At Mach numbers of 3.95 and 4.63 the experimental pressure distributions over the 
wing surfaces affected by expanded flow a r e  essentially constant. 

The linear-theory methods used to predict the wing pressures are in reasonable 
agreement with the experimentaL data throughout the test Mach number range. 

At the higher Mach numbers the Prandtl-Meyer expansion method (from free-stream 
conditions) affords good agreement with the experimental data over the wing upper sur-  
faces at angle of attack. 

Although some pressure gradient exists over each of the flat lower wing surfaces at 
angle of attack at Mach number equal to 4.63, the two-dimensional shock-expansion method 
provides an accurate estimate of the average pressure coefficient for each surface. 

INTRODUCTION 

- 
In the field of aeronautical research there is a continuous effort toward the develop- 

ment of new methods with greater reliability for predicting. the aerodynamic characteris- 
tics of flight vehicles. Considerable progress has been made i n  recent years utilizing 
various theories and numerical procedures in conjunction with the electronic computer to 
provide methods by which the engineer can make quicker and more precise evaluations of 



relatively complex configurations (refs. 1 to 3). To date most of the computer programs 
dealing with supersonic aerodynamics have been based on the linear theory. Due to its 
basic assumption of small perturbations (pressure disturbances small  in comparison with 
static pressure) this theory would be expected to be most effective in the lower supersonic 
speed range and to exhibit a decrease in reliability at the higher Mach numbers. It is 
understandable, therefore, that most of the work based on this theory has been concen- 
trated in  the lower supersonic speed range to Mach n u b e r s  of about 3. 

There presently exists the need to determine the effectiveness of these and other 
theoretical methods in predicting the aerodynamic characteristics of flight vehicles in 
the high supersonic speed range. The data of reference 4 indicate that for some wing 
planforms the computerized Iift program (based on linear theory, see ref. 2) used in that 
investigation provides good agreement with experiment for Mach numbers to 4.63. Also, 
data from previous investigations, such as those of references 5 to 7, indicate that the 
pressure distribution over essentially flat lifting surfaces at moderate angles of attack 
becomes relatively constant as hypersonic speeds are approached; and in many instances, 
the pressure distribution may be approximated by theories based on two-dimensional or  
conical flows. With regard to the fuselage, several  methods which have been considered 
for predicting the flow fields about slender bodies of revolution at high supersonic speeds 
are discussed in references 8 to 10. 

The purpose of the present investigation is to determine the effectiveness of vari-  
ous theoretical methods in predicting the pressure distribution over a wing-body configu- 
ration at high supersonic speeds. Theoretical pressure coefficients are compared with 
the experimental values obtained on a delta planform wing-body model at Mach numbers 
from 2.30 to 4.63. 

SYMBOLS 

b wing span 

C local wing chord 

cP 
pz - p* 

qco 
pressure coefficient, 

L body length 

M Mach number 

local static pressure pZ 
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free-stream static pressure pc-3 

qc-3 free-stream dynamic pressure 

X longitudinal distance measured from body nose or wing leading edge 

lateral distance measured from body center line 

angle of attack measured from body center line, deg 

body meridian angle measured from top, deg 

Y 

a! 

@ 

Subscripts : 

b body 

W wing 

APPARATUS AND METHODS 

Model 

A drawing of the model is presented in figure 1. The forward 70 percent of the 
fuselage was contoured according to the method described in reference 11, which predicts 
the profile required for minimizing the wave drag (in this case fo r  a body of specified 
length and base diameter). The remaining aft section of the fuselage was cylindrical. 
The wing had a delta planform of 65O leading-edge sweep and a symmetrical double-wedge 
airfoil section of 6-percent thickness. Pressure orifices were located along the surface 
of the upper left quadrant of the fuselage and on the upper surface of the left wing. Thus, 
since the configuration was symmetrical with respect to the horizontal plane, pressure 
measurements could be obtained over the entire configuration by the appropriate selection 
of the test angles of attack. 

Tunnel 

The investigation was conducted in the high Mach number test section of the Langley 
Unitary Plan wind tunnel, which is a variable-pressure continuous-flow facility. The test 
section is approximately 1.2 meters square by 2.1 meters long. The nozzle leading to the 
test section is of the asymmetric sliding-block type, which permits a continuous variation 
in Mach number from 2.3 to 4.7. 

3 



Measurements, Corrections, and Tests 

The pressures were measured with the use of two multi-channel electrical trans- 
ducers having a maximum variation of 34 475 N/m2 and an  accuracy within 345 N/m2. 
Boundary-layer transition strips approximately 1.6 mm wide were placed 10 mm rear-  
ward (streamwise) of the wing leading edge and 30.5 mm rearward of the nose apex. The 
strips were composed of No. 40 carborundum grains embedded in a plastic adhesive. 

The test angle-of-attack range was approximately *loo. The angles of attack have 
been corrected for tunnel flow angularity and for deflection of the model support system 
due to load. The tests were conducted at Mach numbers from 2.30 to 4.63 and at a 
Reynolds number of 9.84 X lo6 per meter. The dewpoint was maintained below 239 K to 
prevent moisture condensation effects. 

PRESENTATION OF RESULTS 

The results of this investigation a r e  presented in the following figures: 
Figure 

Experimental pressure coefficients over body; M = 2.30 . . . . . . . . . . . . . .  2 
Experimental pressure coefficients over body; M = 2.96 . . . . . . . . . . . . . .  3 
Experimental pressure coefficients over body; M = 3.95 . . . . . . . . . . . . . .  4 
Experimental pressure coefficients over body; M = 4.63 . . . . . . . . . . . . . .  5 
Comparison of body experimental data with conical-shock-expansion 

method; a=O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 
Comparison of body experimental data with conical-shock-expansion 

method; a = 6.2O; M = 4.63 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 
Experimental pressure coefficients over wing; M = 2.30 . . . . . . . . . . . . . .  8 
Experimental pressure coefficients over wing; M = 2.96 . . . . . . . . . . . . . .  9 
Experimental pressure coefficients over wing; M = 3.95 . . . . . . . . . . . . . .  10 
Experimental pressure coefficients over wing; M = 4.63 . . . . . . . . . . . . . .  11 
Comparison of wing experimental data with linear-theory method; 

a!=6.7'; M = 2 . 3 0 . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12  
Comparison of wing experimental data with linear- theory method; 

a!=6.5'; M = 2 . 9 6 . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13 
Comparison of wing experimental data with linear-theory method; 

a!=6.4'; M = 3 . 9 5 . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14 
Comparison of wing experimental data with linear-theory method; 

a!=6.2'; M = 4 . 6 3 . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15 
Comparison of wing experimental data with various theories; a! = 6O . . . . . . .  16 
Comparison of wing experimental data with various theories; a c 1l0 . . . . . . .  17 
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DISCUSSION 

The experimental pressure coefficients measured over the body are shown in fig- 
ures  2 to 5. The data over the nose section forward of the wing generally exhibit the 
expected higher values near the nose, followed by a decrease in Cp as the flow expands 
rearward. For 3 2 0.5 the effects of wing interference become noticeable, particularly 
over the lower body surface at angle of attack. 

2 -  

For the Mach numbers and angles of attack considered in this investigation, the 
most accurate technique for predicting the pressure coefficients over the forebody likely 
would be that of reference 8, which utilizes the method of characteristics. However, due 
to the relatively large amount of time required to employ that procedure, recourse was 
made to the comparatively simple conical-shock-expansion method considered in refer- 
ence 10 wherein it is assumed that the flow at the nose apex is conical and expands two- 
dimensionally along the body meridian lines. In figure 6 the pressure coefficients pre- 
dicted by this method a r e  compared with experimental values at zero angle of attack for 
Mach numbers of 2.30 and 4.63. It should be pointed out that no attempt was made to 
account for the effects of wing interference which begin at 7 = 0.5. As expected, the 
agreement is relatively poor at M = 2.30 but improves considerably as Mach number 
is increased to 4.63. A comparison of theory with experiment at M = 4.63 and a! = 6.2O 
is shown in figure 7. As expected, the theoretical data predict a relatively low pressure 
at 4 = 0 and an increase in Cp as $I is varied to 180O; however, the experimental 
data indicate a higher pressure at 4 = 0 than would be expected in comparison with the 
other experimental data and theory. It is believed that this increased static pressure may 
be attributed to the merging of the crossflow at the $I = 0 meridian plane. For  bodies 
of fineness ratio similar to that considered herein (-8.4), these data indicate that at Mach 
numbers near and above 4.63 the conical-shock-expansion method may be considered 
accurate enough for many engineering purposes. 

The experimental data for the wing are presented in figures 8 to 11. At the lower 
Mach numbers the data exhibit considerable variation of pressure coefficient in both the 
chordwise and spanwise directions. However, these gradients diminish as Mach number 
is increased. At Mach numbers of 3.95 and 4.63 the pressure distributions over the wing 
surfaces affected by expanded flow are essentially constant. 

Comparisons of the wing experimental pressure coefficients with the linear-theory 
method are shown in figures 12 to 15 for an angle of attack of approximately 6O. The lift- 
induced pressure was calculated with the use of a computer program based on the method 
described in reference 2. In that approach the model is described to  the computer as a 
plate the planform of which is representative of the configuration. The curvature of the 
plate is determined by the mean camber of the wing, the fuselage curvature, and the 
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vertical position of the wing relative to the fuselage. To account for the effects of wing 
thickness, an incremental pressure was added to the lift-induced pressure. The proce- 
dure is based on the application of supersonic sources to thin wings, as described in 
reference 12. As previously mentioned, the theoretical data would be expected to become 
less effective as Mach number is increased. However, for this particular configuration 
at least, the combination of the two methods produces results which are in reasonable 
agreement with the experimental data throughout the test Mach number range. 

Comparisons of the wing experimental pressure coefficients with the predictions of 
various other theories a re  shown in figure 16 for an angle of attack of approximately 6O. 

The effects of body interference have been neglected in the theoretical calculations. As 
expected, none of these methods is effective in predicting the pressure coefficients at 
M = 2.30. Especially noteworthy in the disagreement are the relatively large experimen- 
tal pressure gradients over the wing surfaces, in contrast to the constant values (per flat 
surface) predicted by the theoretical methods. As previously mentioned, the experimen- 
tal pressure gradients over the wing surfaces greatly decrease as Mach number is 
increased. At the higher Mach numbers the Prandtl-Meyer expansion from free-stream 
conditions (P-M expan. from free stream) affords good agreement with the experimental 
data over the upper surfaces. Although a considerable gradient remains over the lower 
forward wing surface at the higher Mach numbers, the tangent-wedge (or oblique-shock) 
method provides a good estimate of the average pressure coefficient. At M = 4.63 the 
Prandtl-Meyer expansion from the tangent-wedge value of the forward surface (commonly 
referred to as the shock-expansion method) provides good agreement of theory with the 
average experimental pressure coefficient over the lower rearward surface. Figure 17 
presents a comparison of these theories with the experimental data at an angle of attack 
of approximately 1 lo. The relationship between the theoretical and experimental values 
is very similar to that at a! = 6'. 

CONCLUSIONS 

An investigation has been conducted to determine the effectiveness of various theo- 
retical methods in predicting the pressure distribution over a wing-body configuration at 
Mach numbers from 2.30 to 4.63. The results are summarized as follows: 

1. For bodies of fineness ratio similar to the fuselage forebody considered herein 
the data indicate that at Mach numbers near and above 4.63 the conical-shock-expansion 
method may be considered accurate enough for many engineering purposes. 

2. At Mach numbers of 3.95 and 4.63 the experimental pressure distributions over 
the wing surfaces affected by expanded flow are essentially constant. 
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3. The linear-theory methods used to predict the wing pressures a r e  in reasonable 
agreement with the experimental data throughout the test Mach number range. 

4. At the higher Mach numbers the Prandtl-Meyer expansion method from free- 
stream conditions affords good agreement with the experimental data over the wing upper 
surfaces at angle of attack. 

5. Although some pressure gradient exists over each of the flat lower wing surfaces 
at angle of attack at Mach number equal to 4.63, the two-dimensional shock-expansion 
method provides an accurate estimate of the average pressure coefficient for each surface. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Hampton, Va., August 12, 1971. 
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Figure 2.- Experimental pressure coefficients over body; M = 2.30. 
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Figure 3.- Experimental pressure coefficients over body; M = 2.96. 
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Figure 11.- Experimental pressure coefficients over wing; M = 4.63. 
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Figure 13.- Comparison of wing experimental data with linear-theory method; a = 6.5O; M = 2.96. 



-. 3 

-. 2 

-. 1 

0 

. 1  

. 2  

. 3  

. 4  
0 . 1  . 2  . 3  . 4  . 5  .6 . 7  . a  .9 2 . 0  

x , l c  
Y (b) - = 0.444. 

b/2 

Figure 13.-  Continued. 



x,lc 
Y (c )  -= 0.629. 

b/2 

Figure 13.- Continued. 



0 .1 . 2  . 3  . 4  . 5  . 6  . 7  .8 .9 1 . 0  
x , l c  

Y (d) b/z= 0.815. 

Figure 13.- Concluded. 



7 . 3  

-. 2 

-. 1 

c P  
0 

. 1  

. 2  

. 3  

B 
0 . 1  . 2  . 3  . 4  . 5  . 7  . 8  . 9  1 . 0  

. -  

(a) y= 0.258. 
b/2 

Figure 14.- Comparison of wing experimental data with linear-theory method; a! = 6.4O; M = 3.95. 
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Figure 15.- Comparison of wing experimental data with linear-theory method; a! = 6.2O; M = 4.63. 
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Figure 16.- Comparison of wing experimental data with various theories; a! = 6'. 
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